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 Performance of Cassini Reaction Wheel Friction Compensation Scheme  

during Spin Rate Zero-crossing and Drag Spikes*  
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Cassini uses reaction wheels to achieve the spacecraft pointing 
stability that is needed during imaging operations of several science 
instruments. The Cassini flight software makes inflight estimates of 
reaction wheel bearing drag torque and the reaction wheel controller 
uses these estimates to achieve a high level of spacecraft pointing 
stability. However, the Cassini drag torque estimator was designed to 
accurately track the bearing drag torque only in the steady state. When 
the physical drag torque changes abruptly (for example, during a 
reaction wheel spin rate reversal or when wheel bearings experienced 
drag spikes), the drag estimator will not be able to track the physical 
drag closely. This will lead to a degradation in the spacecraft pointing 
stability performance. For Cassini, this was not a problem because of 
the significant performance margin in pointing stability. However, for 
missions that have very challenging pointing stability requirements and 
that must perform well in the presence of frequent wheel rate reversals, 
alternative drag-compensating control schemes must be considered. To 
this end, alternative drag torque compensating control schemes (such as 
the adaptive model reference control scheme) are briefly reviewed in 
this paper. Selected design features used in these friction compensation 
schemes may be incorporated in reaction wheel controller design to 
improve the robustness of spacecraft pointing stability performance 
with regard to a wide range of reaction wheel drag torque anomalous 
behavior.  

 
Keywords: Adaptive system, Attitude control system, Cassini, Command-shaping, Dahl friction, Dither, 
Drag spikes, Friction compensation, Pointing stability, Reaction wheel, Stiction friction, Zero-crossing. 
 

I. Introduction 
As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout 

its four-year prime mission (2004–08), and has been approved for two extended missions.1 The first 
extended mission called the Cassini Equinox Mission was completed in September 2010. The second 
extended mission called the Cassini Solstice Mission was completed in September 2017.	   On September 15, 
2017, Cassini dived into the Saturn’s atmosphere, sending back science data for as long as its thrusters can 
keep the spacecraft’s antenna pointed at Earth, and burnt up and disintegrated like a meteor.  

Cassini uses reaction wheels to achieve the spacecraft pointing stability that is needed during imaging 
operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction 
wheel bearing drag torque and made them available to the reaction wheel controller to achieve a high level 
of pointing stability.2 Since its launch on October 15, 1997, the performance of the Cassini AACS design 
has been superb. All pointing stability requirements of the narrow angle camera are met with significant 
margin.3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*Copyright 2017 California Institute of Technology. Government sponsorship acknowledgement. 
1Section Staff, Guidance and Control Section, Division of Autonomous Systems. Mail Stop 230-104, 4800 Oak Grove Drive, 
Pasadena, CA 91109-8099, USA. Project Element Manager, Cassini Attitude and Articulation Control Mission Operations Team, 
1999–2009. Allan.Y.Lee@jpl.nasa.gov. 
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However, the Cassini drag torque estimator was designed to accurately track the bearing drag torque 
only in the steady state. When the physical drag torque changes abruptly due to, for example, a spin rate 
reversal (“zero-crossing”), the drag estimator can still track the physical drag torque but there will be 
significant transient tracking error of the drag torque. The faster the drag torque changes, the larger will be 
the tracking error.4,6 As a result, the drag torque estimator will not be able to fully compensate the physical 
drag, and the spacecraft pointing stability performance will suffer as a result. For Cassini, this was not a 
problem because of the large performance margin mentioned above. However, for missions with very 
challenging pointing stability requirements and must perform well in the presence of abrupt drag torque 
changes, alternative drag-compensating control schemes must be considered. An important class of 
scenarios to consider is when the spacecraft performs a flyby of a planetary moon. Typically, a camera or 
the high-gain antenna mounted on the spacecraft will be nadir-pointed at a target throughout the motion. 
Hence, the nadir axis will require a slew angle of 180˚ in an inertial frame. In these flyby scenarios, as 
illustrated in Appendix A, there will be zero-crossing of the reaction wheel’s spin rate. The resultant 
attitude perturbations will degrade the S/C pointing stability performance just at the time when camera 
must perform critical imaging of the target. 

Since the year 2000, all Cassini RWA bearings experienced a class of anomalous drag torque that were 
generally “spiky” in nature.4 The initial sudden rise in drag torque was often followed by either a rapid 
(several minutes) or gradual (several hours) exponential decay to the nominal drag level. In these scenarios, 
again, the implemented Cassini RWA drag torque estimator could not fully compensate for these drag 
spikes, and the spacecraft attitude control and stability performance degraded. Many other spacecraft had 
experienced anomalous reaction wheel bearing drag torque symptom similar to those of Cassini (e.g., 
XMM-Newton, Rosetta, DAWN, and others mentioned in Ref. 4). For example, beginning in April 2013, 
the Solar Dynamics Observatory (SDO) operations and instrument teams began observing an increase in 
spacecraft jitter that was ultimately traced back to anomalous behavior in one of its reaction wheels 
believed to be related to fluctuations in bearing friction.5 Since it is hard to completely avoid having 
bearing drag spikes during operations, it is important to have a drag torque estimator that can track transient 
drag “spikes” as well as possible. 

In this paper, sets of anomalous Cassini wheel bearing drag torque signatures that had been observed 
inflight will first be described.4 Then, telemetry that shows the impacts these bearing drag torque had on the 
spacecraft attitude and attitude rate will be presented. Finally, a limited-scope literature survey of friction-
compensating control strategies that had been found in past research works that can maintain the low-
velocity tracking performance of a pointing system in is given. To this end, six different friction-
compensating control schemes are briefly reviewed in this paper. They are: [1] Use of a high-gain velocity 
control loop, [2] estimation-based friction compensation system, [3] adaptive friction compensation system, 
[4] extended Kalman-Bucy filter-based compensation system, [5] use of a shaped drag torque 
compensation command, and [6] the use of a dither signal. Not surprisingly, past research had indicated 
that all these control schemes can outperform traditional linear control systems. Selected design features 
used in these control schemes may be incorporated in a reaction wheel controller design to improve the 
robustness of spacecraft pointing stability performance relative to a wide range of reaction wheel drag 
torque nonlinear behavior.  

 
II. Cassini Reaction Wheel Controller Design2  

The reaction wheel assemblies are used primarily for attitude control when precise and stable pointing 
of a science instrument is required during the prime mission phase. Because the spacecraft’s principle axes 
are very closely aligned with the spacecraft’s mechanical axes, the basic structure of the Reaction Wheel 
Attitude Control System (RWAC) is a decoupled, three-axis, Proportional and Derivative (PD) controller. 
Fig. 1 is an illustration of the RWAC design.2 Due to the presence of bearing drag torque in the reaction 
wheels, a controller with the “PD” control architecture will not be able to drive the spacecraft attitude 
control error to zero unless an integral term is added to the PD controller. This difficulty was overcome by 
the addition of a Proportional and Integral (PI) estimator of the bearing drag torque in the flight software. In 
effect, integral control action is added “locally” to remove any steady-state spacecraft attitude control 
errors. Fig. 2 is a simplified illustration of the drag torque estimator design.6 As illustrated in Fig. 2, the 
estimated bearing drag torque is added to the S/C’s attitude control torque (TControl) to form the total torque 
command (TTotal). The total torque is sent to the RWA D.C. motor. With this control architecture, if the 
bearing drag torque is elevated due to anomalous bearing performance, a larger motor torque command will 
be sent. As a result, impacts of the anomalous bearing drag on the S/C attitude control performance is 
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minimized. The estimated drag torque is also made available via telemetry to the mission operations team. 
Ground operators trend this and other RWA data (e.g., bearing temperatures) to monitor the long-term 
health of the reaction wheels. The RWAC design has a bandwidth of 0.0299 Hz (in Fig. 1, Kp = 0.2273 
rad/s and Kd = 0.1557 rad/s). The gain and phase margins of RWAC are 10 dB and 30°, respectively.2 

  
Fig. 1. Block Diagram of the Reaction Wheel-based Attitude Control System2 

 
 

Fig. 2. Block Diagram of the Reaction Wheel Hardware Manager Design6 
 
The drag torque estimator was designed to accurately track the physical bearing drag torque only in the 

steady state. When the physical drag torque changed due to varying RWA spin rate (or experienced 
anomalous drag “spikes”), the drag estimator can still track the physical drag torque but there will be a 
tracking error. Let TPhy(s) and TEst(s) be the Laplace transforms of the physical and estimated drag torques, 
respectively. From Fig. 2, we have:4,6 
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In this expression, KP and KI are the gains of the PI drag torque estimator, and IRWA is the moment of inertia 
of each reaction wheel’s rotor. The gains are selected to be: KP = 2ξDωDIRWA and KI = ωD

2IRWA. Here, ωD 
and ξD are the bandwidth and damping ratio of the drag torque estimator design (ωD = 0.01 Hz and ξD= 
0.707). As an example, Fig. 3 depicts the time history of the estimated drag torques TEst(t) in response to 
two similar but different “triangular impulse” drag torques TPhy(t). Both impulses rise from the nominal 
drag level to a peak drag level with a “delta” of -2.5 mNm in 10 s. Thereafter, the first and second drag 
impulses fall linearly from their respective peaks back to the nominal level in 10 and 30 s, respectively. As 
depicted in Fig. 3, the first estimated peak drag “delta” is about 0.6 mNm which is only 24% of the actual 
drag torque “delta.” The second estimated peak drag “delta” is about 1.2 mNm which is 48% of the actual 
peak torque “delta”. Their “settling” times are 70–80 s, significantly longer than the actual time. 

 
Fig. 3. Time Histories of Estimated RWA Drag Torques4 

 

 
III. Cassini Attitude Control Performance during RWA Spin Rate Zero Crossing 

 

In Fig. 4, there was a “zero crossing” of the RWA-4 rate at 2013-DOY-005T18:24:11 (as indicated by 
a bold arrow head), from the clockwise (CW) to the counter-clockwise (CCW) direction.6 The crossing 
happened at a rate of +1.73 rpm per second.# As a result of the incomplete RWA-4 drag torque 
compensation, noticeable perturbations in all three per-axis S/C’s attitude control errors were observed 
immediately after the crossing. About the X-axis, there was a S/C attitude perturbation of -11 µrad in 9.5 s. 
Hence, the X-axis rate perturbation is -1.16 µrad/s. Those about the Y and Z-axis are +0.87 and -1.48 
µrad/s, respectively. The MOI’s of the S/C about the X, Y, and Z-axis are (in the year 2013) [6,400, 5,300, 
3,500] kg-m2, respectively. The angles between the spin axis of RWA-4 and the S/C’s X, Y, and Z-axis are 
[45˚, 114.1˚, 54.74˚], respectively. Using the estimated rate perturbations about the S/C’s X, Y, and Z-axis, 
the estimated torque impulses due to the zero-crossing are -10.5, -11.3, and -8.95 milli-Nms, respectively. 
The mean value of the torque impulse is -10.3 milli-Nms. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
#Experiment results reported in Ref. 28 indicate that the zero-crossing torque impulse is related to the crossing rate. Hence, the 
crossing rate is recorded here. 
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The perturbations in the S/C’s attitude control errors observed during RWA-4 spin rate zero-crossing 
may be explained as follows: At the time when the RWA-4 rate slowed from a small CW spin rate (say, 1-2 
rpm) toward and reached zero rpm, the control torque was at a level needed to overcome stiction drag 
torque in the CW direction. When the wheel stopped, the spacecraft attitude about the RWA-4 axis is no 
longer being controlled. As a result, all three per-axis attitude control errors began to diverge (see Fig. 4). 
The star tracker detected this growing attitude error and will command the D.C. motor of RWA-4 to issue 
more control torque. The “extra” torque is needed to compensate for the incomplete drag torque 
compensation due to the abrupt nature of zero-crossing drag. The process took some time because there 
must be enough accumulated attitude errors to generate control torque to first reduce the initial control 
torque (that was needed to overcome the CW stiction drag) to zero, and then to increase the motor torque to 
a level needed to overcome the CCW drag torque in the opposite direction. During this process, the RWA-4 
was stopped momentarily (but it will be very hard to spot that in the RWA-4 spin rate telemetry due to the 
“noisiness” of the data). Once the CCW stiction drag is overcome by the RWA-4 motor, the reaction wheel 
will begin to move and get away from the “zero crossing” condition.# At that time, full spacecraft attitude 
control was regained and all per-axis attitude control errors began to fall to a nominal level.  

The instrument CIRS (Composite Infrared Spectrometer) has a stability requirement of 100 µrad over 
22 s (2𝜎 per axis).1,3 This corresponds to a rate change requirement of not more than ≈4.6 µrad/s. The 
boresight axis of CIRS is aligned with the S/C’s -Y-axis.1 Hence, the instantaneous velocities of the S/C 
about the X and Z-axis must not exceed 4.6 µrad/s. From the back-of-envelop calculations made above, the 
velocity changes due to the zero crossing had magnitudes of 1.16–1.48 µrad/s about these two axes.  Hence, 
for CIRS (and other remote-sensing science instruments), the observed crossing-related perturbed rates 
were not be a problem. However, for missions without the benefit of large performance margin, a more 
capable drag torque estimator that can better track transient drag “spikes” will be needed.  

Two additional examples of perturbations in Cassini’s attitude control errors observed during RWA 
spin rate zero-crossing are given in Appendix B. 

	  
Fig. 4. Transients of S/C Attitude Errors Caused by RWA-4 Rate Reversal on 2013-DOY-005.6 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
#The extra X-axis control torque needed could be estimated by KpKdIxxqX or 0.2273´0.1557´6,400´11e-6 ≈ 2.49 mNm. The values of 
Kp and Kd cited were given in Section II. The peak X-axis attitude control error depicted in Fig. 4 was 11 µrad. About the RWA-4 axis, 
the “extra” D.C. motor torque is 2.49/cos45˚ = 3.52 mNm. 
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Cassini is not alone. Operations teams of other missions had made similar observations. On February 
16, 2014, RWA-4 of the SDO spacecraft also had a zero-crossing.5 The crossing was accompanied by 
spikes in the spacecraft attitude error of ≈ -58 µrad (-12 𝑠𝑒𝑐) about the roll axis and -34 µrad (-7 𝑠𝑒𝑐) about 
the pitch axis (see Fig. 5). The perturbation was large enough to briefly trip the onboard fault 
detection system. Further investigation showed that upon RWA-4 reaching zero rpm, the ACS controller 
began issuing RWA4 progressively larger torque commands with no response from the wheel until the 
commanded torque reached a value of ≈26 milli-Nm. At this point the wheel suddenly began rotating again, 
and the aforementioned attitude disturbance was induced on the spacecraft.  

 
 

Fig. 5. SDO Attitude Transients Caused by A RWA Rate Reversal 
(Note the large attitude control error transient at 13:00 GMT)5  

 
IV.  Cassini Reaction Wheel Drag Torque Spikes 

There is a class of anomalous drag torque signatures that appeared in the RWA drag telemetry since 
the year 2000. This class of anomalous drag torques is “spiky” in appearance, and the drag spikes usually 
occurred at time when the wheels were maintained at a constant spin rate. In a constant-spin rate condition, 
the expected drag torque should be nearly constant. This is indeed the case, but at times drag torque spikes 
were observed superimposed on the “constant” drag torque. Typically, the drag “spike” consists of an 
initial impulsive rise in drag magnitude followed by either a rapid (several minutes) or gradual (several 
hours) decay in magnitude to its nominal drag torque level. Sometime later, another drag spike, possibly 
with a different magnitude, will appear, and a drag torque “train” is formed. The spikes had a wide range of 
magnitudes and they occurred in a wide range of RWA spin rate conditions. Two sub-classes of anomalous 
drag torque spikes are described below.  
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Depicted in the top subplots of Fig. 6 are the time histories of the RWA-4 spin rate and drag torque 
observed on 2004-DOY-041 when the wheel was maintained at an almost-constant rate of +271 rpm. 
Without any clear cause, several drag spike transients (as indicated by a bold arrow head) with magnitudes 
of 0.2–1.5 mNm were observed. These spikes decayed to the nominal level quickly, in 6.5–7 min. The 
second class of anomalous drag spikes was also “spiky” in nature but they had significantly longer “settling” 
times. Depicted in the bottom subplots of Fig. 6 are the time histories of RWA-1 spin rate and drag torque 
observed on 2006-DOY-266 when RWA-1 was maintained at an almost-constant rate of -250 rpm when a 
set of anomalous drag spikes (as depicted by a bold arrow head) were observed. The magnitudes of these 
spikes were about 6–7 mNm. These drag spikes decayed to the nominal level slowly, in about 1.4–1.5 hour 
(instead of several minutes).  

 

 
 

Fig. 6. Spiky RWA-4 and RWA-1 Drag Torque Observed4 

 
The most pronounced characteristic of the drag spikes is that they have an abrupt onset followed by an 

exponential decay. The definite cause of these drag torque spikes is unknown. Our conjecture is that it is an 
“oil jog” phenomenon: a rapid incorporation of some quantity of lubricant by the bearings followed by its 
relatively slow dispersal. Bearings can have small pockets of lubricant that collect outside of the normal 
ball/cage and ball/race contact areas. They can become entrained in the contact areas by a variety of 
processes. Bearings that suddenly encounter an addition of oil will show an abrupt increase in drag that will 
then dissipate. The size of the drag torque spike and the time required to redistribute the oil depend on the 
amount of oil in question and the RWA spin rate at the time the spike occurred. If this conjecture is right, it 
is actually a positive indication of the presence of useful oil in bearings.4 However, if the drag spike is large, 
it might be an indication that some of the lubricant is congealed. Cassini mission operation team has 
trended the magnitudes and occurrence frequency of these drag spike events. The spikes observed have a 
wide range of magnitude, and they occurred in a wide range of RWA spin rates. The incidence of these 
drag spike events did not decline over time as the bearings accumulate run time. Hence, it is important to 
have in the RWAC a friction-compensating scheme to mitigate the impacts of these spikes on the S/C’s 
pointing stability. 
 
IV.1 Incomplete Compensation of a Large Drag Spike Could Trigger Fault Protection 

On 2004-DOY-212 (July 31, 2004), Cassini was commanded to perform a continuous Z-axis roll using 
RWA-1, 2, and 4. Science observations during this rolling motion do not require meeting any tight S/C 
pointing stability requirement. Hence, small perturbations in the S/C attitude errors due to incomplete 
compensation of the drag torque spikes are not very important in this scenario. However, incomplete 
compensation of drag torque spikes can create another kind of S/C problem: triggering a fault protection 

2006-DOY-266 

2004-DOY-041 
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error monitor. During this rolling motion, RWA-1 rate fluctuated between -764 and -1194 rpm, which are 
well outside the sub-EHD region (±300 rpm). Nevertheless, the estimated RWA-1 drag was found to be 
significantly larger than the predicted value at 2004-DOY-212T05:00:00 (see the top right subplot of Fig. 
7). Incomplete drag torque compensation happened because of the “spiky” nature of the drag torque as well 
as the truncation of the estimated drag torque by the “Drag Torque Limiter” (DTL, see Fig. 2) in the flight 
software. The DTL was used to remove any unreasonably large drag estimate generated by the estimator. 
The threshold of the DTL was set at 30 mNm. It was thought that drag torque, even when the RWA is 
operated at a peak rate of ≈2,000 rpm, will not exceed this selected threshold. Unfortunately, when the 
physical drag is indeed very large, the use of DTL will further escalate the difference between the actual 
and estimated drag torque. Also, due to this truncation, the actual magnitude of the physical drag spike was 
never known. 

As a result of the incomplete drag torque compensation, the RWA-1 controller had difficulty in 
maintaining the commanded RWA-1 spin rate. RWA rate error >84 rpm was observed (see top-left subplot 
of Fig. 8). This level of RWA rate error represented about 42% of the threshold of the monitor entitled 
“Excessive RWA Rate Control Error” (ERRCE). Similar scenarios were observed on 2004-DOY-227, -260, 
-271, and -273. On 2004-DOY-273, 64% of the ERRCE’s threshold was exceeded. Had it been triggered, a 
control mode transition from RWA to RCS thruster would have been commanded by the Safing algorithm.6 
If the safe mode is triggered, all stored sequences onboard will stop executing, and the impacts to the 
mission is significant. This anomaly had resulted in several corrective actions including an increase in the 
threshold of DTL as well as the threshold and persistence limit of the ERRCE monitors (of all active RWA). 
Both the attitude control errors of the S/C’s Y and Z-axis were as large as 40 µrad (see the right subplots of 
Fig. 8). But these perturbations are not too important in this rolling science observation scenario. 

 

 

Fig. 7 A Large RWA-1 Drag Torque Unexpectedly Occurred on 2004-DOY-212. 
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V. Drag Torque Compensation Approaches Studied in Literature 
If a system with drag torque is to be operated only at relative high rates without changing spin 

direction, (i.e., no zero-crossing), drag torque can be adequately modeled as proportional to the spin rate. 
Under this assumption, classical linear controller design techniques can be used. On the other hand, if the 
system must operate at low rates with frequent rate reversals, then the linear controller design technique 
may produce results that are inadequate.  

It is well-known that the pointing system performance degradation due to bearing drag torque may be 
partially compensated with the use of high system gain. But there are disadvantages such as introducing 
instability into the system as well as saturating the control actuators (as well as the allocated power). 
Nevertheless, the feasibility of this simple remedy should be investigated before other more elaborate 
control schemes are explored.  As such, in Section V.1 of this paper, we first consider how the current 
Cassini drag-torque compensator design may be modified using the “high-gain” approach.   

Past research works (e.g., Refs. 7–8) had demonstrated the feasibility of reducing the effects of 
friction/drag (in this paper, the words friction and drag are used interchangeably) on servomechanisms. If a 
good friction model is not available, an “adaptive observer” is used to estimate friction using measured 
quantities such as spin rate, etc. (see Section V.2). An example of adaptive friction-compensating system is 
described in Ref. 9. If a good friction model is available, a model-based friction compensation scheme 
could be used. In this approach, the friction force F is estimated using the model, and a signal that 
compensates for the estimated friction force F is added to control signal (see Section V.3). An example of 
model-based control technique is given in Ref. 10. Ref. 8 provided a comprehensive comparison between 
experimental results obtained with different friction-compensating control schemes. It concluded that all 
these nonlinear controllers can provide better tracking performance when compared to the classical PID-
type controller. Results given in Ref. 8, together with those independently reported in Refs. 9–11 provide 
evidence for the general applicability of these adaptive and model-based friction-compensating control 
schemes. Ref. 12 gives a comprehensive survey of friction-compensating controller schemes up to the year 
1994. 
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Fig. 8. A Large RWA Rate Control Error Triggered by An Incomplete Drag Torque Compensation 
on 2004-DOY-212. 

 
In early 2000, extended Kalman-Bucy filter (EKBF)-based friction-compensating methods had been 

introduced. These methods append the friction state to the system state using a Gauss-Markov formulation, 
and no attempt is made to capture the surface-level friction model in this control scheme. Instead, friction is 
just calculated using simple Newtonian dynamics based on the well-known plant model and motion 
measurements. Ref. 13–14 describe these EKBF-based friction-compensating methods. It will be briefly 
reviewed in Section V.4. Friction compensation via command shaping is briefly reviewed in Section V.5.  

Since static and dynamic friction models will be mentioned in the following sections, these friction 
models are briefly reviewed in the following paragraphs. The static friction model assumes the following 
expression. 

F = sgn v [F, + F. − F, exp − 3
34

5
+ Cv]   (3) 

where v [m/s] is the relative velocity between the two contacting surfaces, F is to the total frictional force 
(N), FC is the Coulomb friction (N), FS is the stiction friction (N), C is the viscous friction coefficient 
(Ns/m), vS is the “critical” Stribeck velocity (m/s), the term exp[-(v/vS)2] models the Stribeck effect (the 
phenomenon of friction decreasing and then increasing with velocity), and sgn(•) is the signum (or sign) 

84 rpm 

40 µrad 
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function. Note that, transitioning from v = 0+ to 0- involves a discontinuous change in the friction force (or 
drag torque).  

It is well known that static friction models do not capture many observed friction traits such as 
hysteresis#, frictional lag, and stick-slip motion". In particular, experiments performed and documented in 
Ref. 29 show that friction in the vicinity of zero crossing is a dynamic phenomenon that static models failed 
to adequately describe. Hence, friction models involving dynamics are needed to better describe the physics 
of frictional phenomenon. A representative dynamic friction model is the Dahl’s model introduced in Ref. 
15. The LuGre (Lund-Greoble) model is an extension of the Dahl’s model.16,30 Dahl made his initial 
observation of non-linear friction effects while studying the behavior of ball bearings acted on by low 
amplitude input forces. At low amplitudes and low frequencies, ball bearings provide some elastic 
resistance to input forces before they finally are permanently displaced. This elasticity results in hysteresis. 
At loads below FC (Coulomb friction), release of the load allows the balls to return to their initial position. 
But if a larger load is applied, there will be a permanent displacement after the load is released. One way to 
describe the Dahl model is as follows: 

 

89
8:
= v − s;

3
<=
z, F = s;𝑧.	    (4) 

 
 

In Eq. (4), z [m] denotes the average bristle (surface asperity) deflection. The interactions between bristles 
of the two contacting surfaces lead to friction.12 The parameter s0 [N/m] is the stiffness (or “spring 
constant”) of the bristles, and v [m/s] is the relative velocity. The Dahl’s model assumes friction force is 
dependent on displacement only. Others dispute that premise and emphasize the importance of velocity 
effects, which are especially dominant in the friction behavior of lubricated contact surfaces. The most 
basic velocity dependencies are the viscous damping and the Stribeck effect given in Eq. (3). The LuGre 
model modifies the Dahl’s model by assuming that friction force varies with not only the bristle deflection 
z, but also bristle deflection velocity 𝑧 and v. One way to describe the LuGre model is given below.16,30 
 

g v = F, + F. − F, exp −
v
v.

5
 

89
8:
= v − s;

3
C 3

z, F = s;𝑧 + CD
89
8:
+ C5v.	    (5) 

 

In Eq. (5), both C1 and C2 have unit of Ns/m (comparable to the viscous coefficient C in Eq. (3)). Other 
parameters such as FC, FS, v, vS, and s0 were defined in Eqs. (3) and (4). As mentioned in the literature, the 
challenge in using these dynamics models is in the estimation of the model parameters.  
 
V.1 Increase the Gain of the Cassini RWA Rate Controller Design. 

The gains of the PI drag torque estimator depicted in Fig. 2 are selected to be: KP = 2ξDωDIRWA and KI 
= ωD

2IRWA. Here, ωD and ξD are the bandwidth and damping ratio of the rate control loop. The bandwidth 
ωD is selected to be 0.01 Hz (and ξD is 0.707). The resultant gain and phase margins of the RWA rate 
control loop are 35 dB and 56°, respectively.2 The selection of a lower bandwidth results in more sluggish 
wheel response to drag disturbances, which is undesirable. Higher bandwidths than that selected will 
degrade phase and gain margins. However, the current set of stability margins have healthy margins. 
Hence, raising the bandwidth ωD could be explored to improve the tracking performance of the RWA drag 
torque estimator.  

In Fig. 3, the peak “delta” magnitude of the physical drag is 2.5 mNm (in 10 s) while the peak 
estimated drag torque is only 0.6 mNm. The difference is as large as 1.9 mNm. Based on Eq. (1), the 
derived upper bound on the difference between the physical and estimated drag at time T is given by ∆(T): 

 

∆(T) 	  = A J–LMNMO

PM DQRM
S

    (6) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
#The relation between drag torque and velocity measured for increasing velocity is different from that measured for decreasing 
velocity. This phenomenon is sometime referred to as “hysteresis.” 
"Stick-slip motion is a common behavior associated with friction. Everyday examples are the squeaking sounds when opening a door 
or writing on a blackboard with a chalk. In these scenarios, the motion of the object is periodic and alternated between stop (“stick”) 
and motion (“slip”). They could be explained via the LuGre dynamic friction model of Eq. (5).30 
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where “A” is the rate of drag torque change (2.5 mNm/10 s or 0.25 mNm/s). Note that the larger ωD is, the 
smaller will be ∆. With ωD = 2π(0.01) rad/s, ξD = 0.707, and T = 10 s, the resultant ∆ ≈3.6 mNm, which 
bounded the actual difference of 1.9 mNm. If ωD is doubled, ∆ will be 1.2 (instead of 3.6) mNm. That is, 
the estimated drag will better track the physical drag. However, the acceptability of the corresponding 
drops in gain and phase margins must be ascertained. 

 
V.2 Adaptive friction compensation schemes8,9,11–12 

The first application of the adaptive friction compensating system was on a 24-inch telescope located 
at the Goddard Optical Research Facility.9 The technique is called a Model Reference Adaptive Control 
(MRAC) approach. The development of this technique was motivated by the proposed usage in future 
experiments of lasers having narrow beam widths. The dynamic tracking accuracy requirements were as 
severe as 0.78 µrad in the presence of varying plant inertia and bearing rate reversals. Details of this model 
reference adaptive control scheme are given in Ref. 9. A block diagram of MRAC is given in Fig. 9. 

Systems for attitude control typically have a cascade structure with a rate control loop and an attitude 
control loop. Since friction appears in the inner loop, it would be advantageous to introduce friction 
compensation in that loop. This is indeed the case for the MRAC scheme as depicted in Fig. 9. The 
reference model depicted near the top of Fig. 9 is a first-order ideal model of the load and tachometer, 
based on the nominal values of the system parameters. Its output vM, the reference rate, is compared with 
the measured rate v, and the difference between vM and v (e) is used by the adaptive friction observer to 
update the friction-compensation gains.9 To be an effective friction compensation system, the bearing rate v 
must be measured with good accuracy. One of the key estimates of the adaptive friction observer is 𝐹,	  the 
estimated friction. It is summed with the control force generated by the linear controller, and is used to 
negate the physical friction F.  

 
Fig. 9. Block diagram of A Model Reference Adaptive Control Scheme 

 
The global asymptotic stability of the MRAC was proven via the Lyapunov’s direct method. Utilizing 

the adaptive scheme, the telescope mount would drive at a low rate to within 0.53 µrad peak-to-peak 
position error. Without the adaptive compensation, a peak-to-peak error of 6.8 µrad would result. This 
represents a 12:1 improvement. Furthermore, when the velocity command signal passed through the null 
point, the adaptive compensation virtually eliminated the discontinuity region caused by friction. Refs. 8 
and 11 documented other applications of the MRAC scheme. A conclusion given in Ref. 8 is that the 
sampling rate of the controller play an important role in the performance of these friction compensating 
systems. For example, when the sampling rate of the MRAC was doubled from 50 to 100 Hz (for the 
experimental work done in Ref. 8), the researchers observed a significant improvement in the tracking 
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performance of these nonlinear controllers. This improved performance may be explained by the fact that 
an instantaneous (discontinuous) change in friction is not as prolonged when the sampling rate is increased. 

 
V.3 Estimation-based Friction Compensation Schemes10, 12 

If frictional torque can be accurately predicted in real-time, then a counteracting command can be 
applied to the system to negate the effect of the frictional torque. With it, the stabilization error will not be 
proportional to the full frictional torque. Instead, the stabilization error will be proportional to the much 
smaller mismatch between the actual frictional torque and that predicted by the model. Furthermore, if the 
predicted frictional torque is adaptively adjusted into agreement with actual friction behavior by processing 
inputs from other system sensor measurement data (e.g., tachometer), then the results will be robust with 
respect to changes in bearing drag performance (as mentioned in Section IV). Ref. 10 gives an example.  

In Ref. 10, the author studied the stabilization of airborne pointing and tracking telescope. For such a 
system, the gimbal bearing friction behavior at rate reversals could not be modeled adequately by static 
friction model. Hence, a dynamic friction model is used instead. To this end, the author postulated the 
following first-order model for the bearing drag torque Tf: 

 

𝜏 8WX
8:
+ TY = T, sgn(w)  (7) 

 

where TC is the bearing Coulomb friction, 𝜏	  is a time constant that is determined experimentally,8,10 and 
𝜔	  is the bearing spin rate. The predicted bearing drag torque Tf is is added to the proportional feedback 
term to cancel the effect of friction during tracking. The value of 𝜏	  was also updated by this friction-
compensating controller since it varies with the operating condition (see Ref. 10 for details). The 
performance of this friction-compensating scheme had been verified experimentally. The author of Ref. 10 
reported a 5:1 improvement in the root-mean-square tracking error (relative to that obtained with the 
classical PID approach). The stability of this control scheme wasn’t proven in Ref. 10, but the stability for a 
similar friction-compensating control scheme had been established in Ref. 8. However, the authors of both 
Ref. 8 and Ref. 10 pointed out the difficulty in tuning the free parameters of the dynamic friction model 
(e.g., the time constant 𝜏	  and the Coulomb friction TC).    
 
V.4 EKBF-based Friction-compensating Methods13-14 

The EKBF-based friction-compensating method is a non-model-based friction-compensating control 
scheme. In this control scheme, a friction estimator is constructed by treating the friction torque as an 
unknown state element. As depicted in Fig. 10 (from Ref. 14), by measuring motion along with applied 
force (or torque) and knowing the system parameters (usually, parameters such as inertia properties of the 
“plant” are known accurately), one can estimate the unknown friction torque required to produce the 
observed motion. The estimated friction is then used to compensate for the physical drag torque of the 
position (or attitude) control system. Based on both simulation and experimental results, the authors of 
Refs. 13–14 conclude that EKBF-based friction estimates compared well to those estimated via model-
based friction estimation schemes reviewed in Sections V.2 and V.3. However, they note that EKBF-based 
methods work on the assumptions that the plant dynamics (e.g., the inertia properties of the “plant”) are 
known accurately. If this is not the case, model-based compensation schemes (e.g., Refs. 8–12) may be 
more useful.  

 
 

Fig. 10. A Position Control System with A Friction Compensator (see Fig. 1 of Ref. 14) 
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V.5 Friction Compensation Via Command Shaping17-18 

The friction discontinuity at a RWA rate reversal causes an undesirable impulsive jerk disturbance to 
the spacecraft. As a consequence, the pointing stability performance of the spacecraft might degrade. In 
order to deal with this disturbance, the authors of Ref. 17 proposed a “command shaping” technique. To 
this end, the bearing drag torque is modeled using an expression similar to Eq. (3), with a drag torque 
discontinuity at zero velocity. In Ref. 17, the discontinuous drag torque is shaped using a parabolic function 
in order to “smooth” out the abrupt change of frictional torque when the reaction wheel crosses the zero 
speed. The three shaping parameters of the parabolic function are selected to meet a set of boundary 
conditions. Closed-form expressions of these parameters are given in Ref. 17, making them suitable for 
implementation in flight software. In this “command shaping” approach, the control torque generated by 
the linear PID controller is augmented with a “shaped” friction compensation torque. The proposed method 
is evaluated using a nonlinear simulation of an attitude control system composed of a quaternion-based PID 
controller, four reaction wheels with nonlinear friction model, spacecraft dynamics, kinematics, etc. The 
effectiveness of the proposed command shaping to deal with the nonlinearity of the reaction wheel is 
confirmed via these simulation works. See also results from Ref. 18. 

 
V.6 Dither-based Friction Compensation Methods12, 19-20 

Traditionally, control engineers have used open-loop “smoothing” techniques such as dither to deal 
with the discontinuous drag torque that happened during bearing rate reversals.12 The dither-introduced 
oscillation will keep the system in motion continuously, avoiding the stiction friction. Hence, dither signal, 
with alternating polarity, can average out the system discontinuity dynamics, and a nearly continuous and 
“linear” system is produced. Classical control techniques can then be applied on this “linear” system. The 
author of Ref. 19 had proven analytically that with dither, abrupt static friction disturbances could be 
eliminated and near linear behavior through zero rate is achieved. However, the addition of a dither signal 
to the reaction wheel control torque can also excite selected spacecraft structural modes, lead to significant 
chattering phenomenon in the spacecraft body rate. This will threaten selected spacecraft pointing stability 
requirements. 

 
V.7 Other Friction Compensation Methods21–26 

There are numerous other friction-compensating control schemes given in the literatures. In Ref. 21, a 
sliding mode controller with a friction observer is used to perform attitude maneuvers in the presence of 
low-speed bearing friction and other external disturbances. Simulation results indicate that the proposed 
friction-compensating controller has better transient and steady-state performance relative to that designed 
using classical linear control techniques. In Ref. 22, a friction compensator was designed based on the 
LuGre friction model (see Eq. (5)) that captured Coulomb friction, viscous friction, stiction friction, and the 
Stribeck effects. Simulation results were shown for a set of spacecraft maneuvers indicating significant 
improvement in the attitude and rate tracking error. Performance of other friction-compensating control 
schemes are described in Refs. 23–27.   

 
VI. Summary 

A high level of spacecraft-pointing stability is needed during imaging operations of most optical 
remote sensing instruments.31 Typically, the required level of pointing stability is only achievable using a 
set of reaction wheels. As illustrated by multiple sets of Cassini flight data, RWA spin rate reversals will 
degrade the pointing stability performance of the attitude control system. The RWA bearing drag 
performance of both the NASA Cassini and ESA XMM-Newton missions were documented in Ref. 4. The 
RWA bearings of these spacecraft had experienced anomalous and “spiky” drag torques at unpredictable 
times. Unless the drag torque compensation system of the RWA controller could deal with these abrupt 
drag changes, the S/C pointing stability performance would also degrade. For Cassini, this wasn’t a 
problem because of the significant performance margin in pointing stability. However, for missions with 
very challenging pointing stability requirements, the implementation of an effective drag-compensating 
control schemes will be critical. Since the early 60’s, many friction-compensating control schemes such as 
the model-reference adaptive control have been studied. A limited-scope literature survey of these friction 
compensations schemes is given in this paper. Many of these nonlinear control schemes can achieve good 
pointing control performance even with repetitive RWA rate reversals. The feasibility of incorporating 
selected design features used in these proven friction-compensation schemes should be explored. The 
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estimated drag torque, either nominal or anomalous, could also be made available to the mission operations 
team. Via trending, ground operators can monitor the long-term health of the reaction wheels.  
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Acronyms 

AACS = Attitude and Articulation Control Subsystem 
CIRS = Composite Infrared Spectrometer 
CW = Clockwise 
CCW = Counter-Clockwise 
DOY = Day of the Year 
DTL = Drag Torque Limiter 
EHD = Elasto-Hydro-Dynamic 
EKBF = Extended Kalman-Bucy Filter 
ERRCE = Excessive RWA Rate Control Error (an error monitor) 
IRU = Inertial Reference Unit 
LuGre = Lund-Greoble (Dynamic) Friction Model 
MRAC = Model Reference Adaptive Control 
PD = Proportional and Derivative 
RWA = Reaction Wheel Assembly 
RWAC = Reaction Wheel Attitude Control System 
S/C = Spacecraft 
SDO = Solar Dynamics Observatory 
XMM = X-ray Multi-mirror Mission 
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Appendix A 
Zero-crossing of Reaction Wheel Rate During a Nadir-pointed Planetary Flyby 

The total angular momentum vector of the spacecraft, as expressed in the spacecraft body frame, has 
two components: HTotal = HSC + HRWA. The component caused by the spacecraft rates is HSC = ISCΩ, where 
ISC = diag([Ixx, Iyy, Izz]T), and Ω = [𝜔[, 𝜔\, 𝜔]]T. The MOI’s of the S/C about the X, Y, and Z-axis are (in 
the year 2013) [6,400, 5,300, 3,500] kg-m2, respectively. To determine the angular momentum of the 
RWAs, we first define the RWA spin rate vector ∆ = [𝜔D, 𝜔5, 𝜔^]T. Note that the prime RWAs of Cassini 
are RWA-1, 2, and 4. The coordinate transformation matrix between these RWA and the S/C’s XYZ axes, 
P, is given in Eq. (A1). In this equation, ei (i = X–Z, or 1,2,4) represents a unit vector in the direction of the 
S/C’s i-axis. To find HRWA in the S/C’s body coordinates, simply multiply ∆ by the inertia matrix for the 
RWAs (IRWA, all RWAs have nearly identical inertia, 0.16 kg-m2), and then multiply the result by the 
transformation matrix P.         
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	  	  	  	  	  	  	  	  (A1) 

The conservation of total angular momentum of the spacecraft (in the absence of external 
environmental torque) is only valid in an inertial coordinate system. As such, a transformation matrix Q(t), 
from the S/C’s frame to the J2000 inertial frame, must be defined. To this end, it is convenient to use the 
S/C’s coordinate frame at time t = 0 as the inertial frame (see Fig. A1). With reference to Fig. A1, the 
transformation matrix Q(t) is given by Eq. (A2). The angle used in Eq. (A2), b = a - a0, is defined in Fig. 
A1. 

𝑄 𝑡 = 	  
𝑐𝑜𝑠𝛽(𝑡) 0 +𝑠𝑖𝑛𝛽(𝑡)

0 1 0
−𝑠𝑖𝑛𝛽(𝑡) 0 𝑐𝑜𝑠𝛽(𝑡)

    (A2) 

 

Fig. A1. A Representative Cassini Flyby of Titan: HGA nadir-pointed at Titan 

In Fig. A1, h is the flyby altitude at closest approach (1,500 km), R is the radius of Titan (2,575 km), V is 
the constant flyby velocity (6.5 km/s), L0, √3(h+R) km, is the horizontal distance at the start of the flyby 
(accordingly, a0 is 30˚). Via simple kinematical relations, the time rate of change of the angle 𝛼 𝑡 	  is given 
by Eq. (A3): 

kl
km

 = n
opq

𝑠𝑖𝑛5𝛼(𝑡)     (A3) 
It is assumed that the selected flyby altitude is such that the Titan atmospheric torque imparted on the S/C 
is insignificant. As such, the total angular momentum vector is approximately conserved in an inertial 
frame during a RWA-based target motion compensation slew. Hence, we can estimate the RWAs’ spin rate 
at time t using the following expression (Eq. (A4)): 
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𝜔D(𝑡)
𝜔5(𝑡)
𝜔^(𝑡)
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0

− 𝑃QD𝑄QD 𝑡 𝑃
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  (A4) 

 
In Eq. (A4), [𝜔D;, 𝜔5;, 𝜔^;]T is the RWAs’ spin rate vector, in rad/s, at time t = 0. 𝜔v 𝑡 	  is the S/C’s Y-
axis rate, 𝛼, given in Eq. (A3), and 𝜔v; is the S/C’s Y-axis rate at time t = 0. Note also that Q-1(t) = QT(t) 
since Q(t) is a symmetrical matrix. Using Eqs. (A1), (A2), and (A3), Eq. (A4) is equivalent to the 
following: 
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The time histories of the RWA spin rates, for eight sets of initial RWA spin rates (see Table A1) are 

computed using Eq. (A5). The results indicate that, in all cases, at least one of the three RWA spin rates 
will have “zero-crossing” in the time window of Tclosest±1086 s.# The approximate times at which the zero-
crossing occurred are given in Table A1. Define C1 =+P�z
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)𝜔^; as the crossing 

criterion of the time history of 𝜔D(t). If 𝜔D; is positive, then the condition “C1<0” predicts a zero crossing 
in the time history of 𝜔D(t). If 𝜔D; is negative, then the condition “C1>0” predicts a zero crossing in the 
time history of 𝜔D(t). Otherwise, there is no zero-crossing. These predictions are confirmed by data given 
in Table A1. The zero-crossing criteria for 𝜔5(t) and 𝜔^(t) are: C2 = − D
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𝜔^; , respectively. Fig. A1 depicts the time histories of the 

RWA spin rates for four sets of initial RWA spin rates. Time histories of RWA spin rates for other sets of 
initial RWA spin rates are omitted for brevity. 

 
Table A1. RWA Spin Rate Reversals During a Titan Flyby 

    
Initial RWAs’ Spin rate 

[rpm]† 
Approximate Time at which RWA-1/2/4 Zero-crossing occurred* [s] 

RWA-1 RWA-2 RWA-4 
[300, 600, 900] 800 No crossing 1,200 
[300, 600, -900] 500 1,000 No crossing 
[300, -600, 900] No crossing 750 1,800 
[300, -600, -900] No crossing No crossing 1,250 
[-300, 600, -900] No crossing 900 1,700 
[-300, 600, 900] No crossing No crossing 1,560 

[-300, -600, -900] 1,500 No crossing 1,000 
[-300, -600, 900] 1,200 780 No crossing 

†These set of spin rates were selected arbitrarily.  *The time of Titan closest approach is t ≈ 1,086 sec. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
#The only case without any RWA spin rate zero-crossing is when [𝜔D;, 𝜔5;, 𝜔^;] = 0, 0, 0 	  rpm. 
However, operating the wheels at near-zero rpm will lead to excessive metal-to-metal contacts between 
bearing balls and races, and is highly undesirable. See Section III.	  
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Fig. A1. Time histories of RWA spin rates during a RWA-based Titan flyby  
(with four sets of initial RWA spin rates) 

 
	    

-‐‑800

-‐‑600

-‐‑400

-‐‑200

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RW
A	  
sp
in
	  ra
te
	  [r
pm

]

Time	  [s]	  

[300,	  -‐‑600,	  900]	  rpm	  

omega	  1 omega	  2 omega	  4

-‐‑1000

-‐‑800

-‐‑600

-‐‑400

-‐‑200

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RW
A	  
sp
in
	  ra
te
	  [r
pm

]

Time	  [s]	  

[300,	  -‐‑600,	  -‐‑900]	  rpm	  

omega	  1 omega	  2 omega	  4



	   21 

Appendix B 
Additional Examples of Cassini Attitude Control Transients  

Triggered by Reaction Wheel Rate Reversals 
 
In Fig. B1, there was a “zero crossing” of the RWA-4 rate near 2013-DOY-005T17:31:12 (as indicated 

by a bold arrow head) from the CW to the CCW direction. The crossing happened at a rate of -1.8 rpm per 
second. As a result of the incomplete RWA-4 drag torque compensation, noticeable perturbations in the X 
and Z-axis S/C’s attitude control errors were observed soon after the crossing. The perturbed rate changes 
about the X and Z-axis are +1.13 and +1.38 µrad/s, respectively. The corresponding torque impulse 
estimates are +10.2 and +8.36 milli-Nms (with a mean value of +9.28 milli-Nms). The crossing-induced 
perturbed rate change about the Y-axis is intertwined with rate changes caused by other Y-axis control 
activities (see right-center subplot of Fig. B1). No estimation of the zero-crossing torque impulse is 
attempted using the perturbed Y-axis rate change.  

In Fig. B2, there was a “zero crossing” of the RWA-2 rate near 2007-DOY-029T21:10:00 (as indicated 
by a bold arrow head) from the CW to CCW direction. There was another “zero crossing” of the RWA-1 
rate near 2007-DOY-029T21:03:00 (also indicated by a bold arrow head) also from the CW to the CCW 
direction. Near the time of these two zero-crossings, we see two perturbations in the X-axis attitude control 
error (top right subplot) and another two Z-axis attitude control error (bottom right subplot). These 
perturbations are all indicated by dashed arrows. The time history of the Y-axis attitude control error is 
given in the center right subplot. In this subplot, we also see two large attitude control errors but they are 
unrelated to the zero crossings. Instead, they occurred as a result of a commanded Y-axis slew. These slew-
induced perturbations are an order of magnitude larger than those caused by RWA zero-crossings. As such, 
those smaller crossing-related perturbations about the Y-axis are harder to observe. To estimate the torque 
impulse due to the RWA-2 zero crossing, we note the fact the MOI’s of the S/C in early 2007 were [6,882, 
5,688, 3,620] kg-m2. The angles between the spin axis of RWA2 and the S/C’s X, Y, and Z-axis are [135˚, 
114˚, 54.74˚], respectively. Accordingly, the estimated magnitudes of the RWA-2 zero crossing-related 
torque impulse are +12.3 and +11.6 milli-Nms, respectively. The mean magnitude of the torque impulse is 
11.9 milli-Nms.  

 

 
Fig. B1. Transients of S/C Attitude Control Errors Caused by RWA-4 Rate Reversal  

Intertwined perturbed attitude 
errors 
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Fig. B2. Transients of S/C Attitude Control Errors Caused by Two RWA Rate Reversals  

 

Start	  and	  end 
of	  a	  Y-‐‑axis	  slew 


